Electronics Engineering

Code	Credit Hours
EE-227	2-1

COURSE DESCRIPTION:

This course covers the elementary concepts required for the analysis and design of electronic circuits. Construction and device characteristics of semiconductor diodes, BJT, and Op Amp circuits. The course will also build the concepts of Digital Systems including binary adder, decoder, multiplexer. A brief introduction of microprocessor and microcontroller architecture will also be taught as a part of this course.

TEXT AND MATERIAL

Textbooks:

- 1. Electronic Principles Latest Available Edition by Albert Malvino (Author), David Bates (Author)
- 2. Digital Design: With an Introduction to the Verilog HDL, VHDL, and SystemVerilog Latest Available Edition by M. Morris Mano (Author), Michael Ciletti (Author)
- 3. Electrical Fundamentals by Aviation Maintenance Technician Certification Series, Latest Available Edition
- 4. Electronic Fundamentals by Aviation Maintenance Technician Certification Series, Latest Available Edition
- 5. Digital Techniques Electronic Instruments by Aviation Maintenance Technician Certification Series, Latest Available Edition

Reference Material:

1. 8051 Microntroller, 4th Edition, Scott Mackenzie

PREREQUISITE:

Electrical Engineering

ASSESSMENT SYSTEM FOR THEORY

Quizzes	10%
Assignments	10%
Mid Terms	30%
ESE	50%

ASSESSMENT SYSTEM FOR LAB:

Quizzes 10%-15%	
Assignments	5% - 10%
Lab Work and Report	70-80%
Lab ESE/Viva	20-30%

Teaching Plan

Week No	Topics	Learning Outcomes	Delivery Method
1/1	Semiconductors	Introduction to semiconductors and principle of semiconductor components	Lecture and discussion
1/2	Diode	Basic principle of diode, biasing and Diode 1 st , 2 nd and 3 rd approximations	Lecture and discussion
2/1	Diode resistances	I-V characteristics, Bulk, Forward, DC, Ac resistances	Lecture and discussion
2/2	Rectification	Bridge rectification, Half wave rectifier, Full wave rectifier.	Lecture and discussion
3/1	Regulators:	Diodes as regulators, Zener diode. Clipper and Clamper	Lecture and discussion
3/2	Power Supply design	DC power supply design, filtering capacitor.	
4/1	Bipolar Junction Transistor	Introduction to BJTs, Operation parameters.	Lecture and discussion
4/2	BJT Configurations:	Common Emitter, BJT as amplifier	Lecture and discussion
5/1	BJT Amplifiers	Small signal amplification, Q point calculations	Lecture and discussion
5/2	BJT Applications	BJT as switch, Gates	Lecture and discussion
6/1	Digital System	Difference between Digital and analog system, Number system	Lecture and discussion
6/2	Number System	Conversion between different number system Present the developed solutions	
7/1	Boolean Algebra	Introduction to Boolean functions	Lecture and discussion
7/2	Boolean Maps	Mapping system, Don't care condition	Lecture and discussion
8/1	Combinational Logics	Designing of binary Adder and Subtractor	Lecture and discussion
8/2	Combinational Logics	Decoder, Encoder, Multiplexer	Lecture and discussion

9	MID TERM EXAM		
10/1	Sequential Logic	Latches, Flip Flops	Lecture and
			discussion
10/2	Programmable Logic	Memory Registers RAM ROM	Lecture and
10/2			discussion
11/1	Data Conversion	Analog to Digital Convertors	Lecture and
			discussion
11/2	Data Conversion	Digital to Analog Convertors	Lecture and
			discussion
12/1	Microprocessor and	Introduction to Microprocessors	Lecture and
4.0/0	Controllers	and microcontrollers	discussion
12/2	8086 Microprocessor	Introduction to 8086 Architecture	
13/1	8051 microcontroller	Introduction to 8051 Architecture	Lecture and
		Introduction to AV/D Architecture	discussion
13/2	AVR Architecture	AVP atmoga229	
	Programming a	AVIN alimeyaszo	Lecture and
14/1	microcontroller	Arduino Nano Programming	discussion
14/2	General Purnose I/O	Input Output ports configuration	01300331011
17/2		Timer introduction and PWM	Lecture and
15/1	Timer	programming	discussion
		P. 03. c	Lecture and
15/2	Serial Communication	UART programming	discussion
10/1		Analog to Digital Convertor	Lecture and
16/1	ADC	Programming	discussion
10/0			Lecture and
10/2	interrupts		discussion
		Operation, application and uses of	
17/1	Filters	the following filters: low pass, high	
		pass, band pass, band	
		stop.	
	Electromagnetic Environment		
		Influence of the following	
		phenomena on maintenance	
		practices for electronic	
17/2		system:	
		HIKF-High Intensity Radiated Field	
		Lightning/lightning protection.	
18		End semester exam (FSF)	
		()	

Electronics Engineering Lab

List of Experiments

Sr. No.	List of Experiments	Equipment's Used	Assessment
1	Introduction to Oscilloscope and Function Generators	CRO, Function Generator	Lab reports and viva
2	Diode Characteristics	1n4007 Diode	Lab reports and viva
3	Half and Full Wave Rectification	1n4007 Diodes, CRO	Lab reports and viva
4	Clipping and Clamping Circuits	1n4007 Diodes, CRO	Lab reports and viva
5	Light Emitting and Zener Diodes	LEDs, Zener Diodes & CRO	Lab reports and viva
6	Bipolar Junction Transistor Characteristics	BJTs, Power Supply, CRO	Lab reports and viva
7	Introduction to Logic gate and Logic Gate ICs	Logic Gate ICs i.e. 7486,7408,7432,7404,7400 etc	Lab reports and viva
8	Implementation of Boolean Expression through logic gates and verification of De-Morgan's Law.	Logic Gate ICs i.e. 7486,7408,7432,7404,7400 etc	Lab reports and viva
9	Implementation of XOR and XNOR gates	Logic Gate ICs i.e. 7486,7408,7432,7404,7400 etc	Lab reports and viva
10	Implementation of Half Adder using fundamental Logic gate ICs	Logic Gate ICs i.e. 7486,7408,7432,7404,7400 etc	Lab reports and viva
11	Implementation of Half Adder using Universal Gate ICs.	Logic Gate ICs i.e. 7486,7408,7432,7404,7400 etc	Lab reports and viva
12	Implementation of Full Adder	Logic Gate ICs i.e. 7486,7408,7432,7404,7400 etc	Lab reports and viva
13	Implementation of Full Subtractor Circuit.	Logic Gate ICs i.e. 7486,7408,7432,7404,7400 etc	Lab reports and viva
14	Introduction and Implementation of Flip Flops using NAND and NOR Gates.	Logic Gate ICs i.e. 7486,7408,7432,7404,7400 etc	Lab reports and viva